
Complex Numbers and Functions
______________________________________________________________________________________________

Natural is the most fertile source of  Mathematical Discoveries

                                                                                                                                  -   Jean Baptiste Joseph Fourier

The Complex Number System
Definition:
A complex number  z  is a number of the form z a ib= + ,  where the symbol i = −1
is called imaginary unit and a b R, .∈   a is called the real part and b the imaginary
part of  z, written

a z= Re      and     b z= Im .
With this notation, we have z z i z= +Re Im .

The set of all complex numbers is denoted by
{ }C a ib a b R= + ∈    , .

If b = 0,  then z a i a= + =0 ,  is a real number.  Also if a = 0,  then z ib ib= + =0 ,  is
a imaginary number; in this case, z is called  pure imaginary number.

Let a ib+  and c id+  be complex numbers, with a b c d R, , , .∈
1. Equality

 a ib c id+ = +      if and only if    a c b d= =  and  .
 
 Note:
 In particular, we have z a ib= + = 0  if and only if  a b= =0 0 and .

 
2. Fundamental Algebraic Properties of Complex Numbers
  (i). Addition

 ( ) ( ) ( ) ( ).a ib c id a c i b d+ + + = + + +
 (ii). Subtraction

 ( ) ( ) ( ) ( ).a ib c id a c i b d+ − + = − + −
 (iii). Multiplication

 ( )( ) ( ) ( ).a ib c id ac bd i ad bc+ + = − + +
 

 Remark
 (a). By using  the  multiplication  formula,  one defines  the  nonnegative  integral

power of a complex number z as
 z z z zz z z z z z zn n1 2 3 2 1= = = = −, , , , .              !

 Further for z ≠ 0,  we define the zero power of  z is 1; that is, z 0 1= .
 (b). By definition, we have

 i 2 1= − ,       i i3 = − ,       i 4 1= .
 
 (iv). Division
 If  c id+ ≠ 0 , then
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 Remark
 (a). Observe that if a ib+ = 1,  then we have
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 (b). For any nonzero complex number  z, we define

 z
z

− =1 1
,

 where z−1  is called the reciprocal of  z.
 (c). For any nonzero complex number  z,  we now  define the  negative  integral

power of a complex number z as

 z
z

z z z z z z z z zn n− − − − − − − − − + −= = = =1 2 1 1 3 2 1 1 11
, , , , .             !

 (d). i
i

i− = = −1 1
,     i − = −2 1,     i i− =3 ,     i − =4 1.

 
3. More Properties of Addition and Multiplication

 For any complex numbers z z z z, , ,  and 1 2 3

 (i). Commutative Laws of Addition and Multiplication:

 
z z z z

z z z z
1 2 2 1

1 2 2 1

+ = +
=

;
.

 (ii) Associative Laws of Addition and Multiplication:

 
z z z z z z

z z z z z z
1 2 3 1 2 3

1 2 3 1 2 3

+ + = + +
=

( ) ( ) ;
( ) ( ) .

 (iii). Distributive Law:
 z z z z z z z1 2 3 1 2 1 3( ) .+ = +

 (iv). Additive and Multiplicative identities:

 
z z z

z z z
+ = + =
⋅ = ⋅ =
0 0
1 1

;
.

 (v). z z z z+ − = − + =( ) ( ) .0

Complex Conjugate and Their Properties
Definition:
Let .,, RbaCibaz ∈∈+=   The complex conjugate, or briefly conjugate, of  z is
defined by

 z a ib= − .

For any complex numbers z z z C, , , 1 2 ∈  we have the following algebraic properties of
the conjugate operation:

(i). z z z z1 2 1 2+ = + ,
(ii). z z z z1 2 1 2− = − ,
(iii). z z z z1 2 1 2= ⋅ ,



(iv). 
z
z

z
z

1
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2







 = ,  provided z2 0≠ ,

(v). z z= ,

(vi). ( )z zn n
= ,  for all n Z∈ ,

(vii). z z z= =     if and only if   Im ,0
(viii). z z z= − =   if and only if   Re 0,
(ix). z z z+ = 2 Re ,
(x). z z i z− = ( Im ),2
(xi). ( ) ( )zz z z= +Re Im .2 2

Modulus and Their Properties
Definition:
The modulus or absolute value of a complex number z a ib= + ,  a b R, ∈  is defined as

z a b= +2 2 .
That is the positive square root of the sums of the squares of its real and imaginary
parts.

For any complex numbers z z z C, , , 1 2 ∈  we have the following algebraic properties of
modulus:
(i). z z≥ = =0 0 0; , and z    if and only if   

(ii). z z z z1 2 1 2= ,

(iii). 
z
z

z

z
1

2

1

2

= ,  provided z2 0≠ ,

(iv). z z z= = − ,
(v). z zz= ,
(vi). z z z≥ ≥Re Re ,
(vii). z z z≥ ≥Im Im ,
(viii). z z z z1 2 1 2+ ≤ + ,   (triangle inequality)

(ix).   z z z z1 2 1 2− ≤ + .

The Geometric Representation of Complex Numbers
In analytic geometry, any complex number z a ib a b R= + ∈, ,  can be represented by
a point z P a b= ( , )  in xy-plane or Cartesian plane.  When the xy-plane is used in this
way to plot or represent complex numbers, it is called the Argand plane1 or the
complex  plane.  Under these circumstances, the x- or horizontal axis is called the axis
of real number or simply, real axis whereas the y- or vertical axis is called the axis of
imaginary numbers or simply, imaginary axis.
                                                          
1 The plane is named for Jean Robert Argand, a Swiss mathematician who proposed the representation of complex numbers in 

1806.



Furthermore, another possible representation of the complex number z in this plane is
as a vector OP .  We display z a ib= +  as a directed line that begins at the origin and
terminates at the point P a b( , ).  Hence the modulus of z, that is z , is the distance of
z P a b= ( , )  from the origin.  However, there are simple geometrical relationships
between the vectors for z a ib= + , the negative of  z; − z  and the conjugate of  z; z
in the Argand plane.  The vector − z  is vector for z reflected through the origin,
whereas z  is the vector z reflected about the real axis.

The addition and subtraction of complex numbers can be interpreted as vector
addition which is given by the parallelogram law.  The ‘triangle inequality’ is
derivable from this geometric complex plane.  The length of the vector z z1 2+  is

z z1 2+ , which must be less than or equal to the combined lengths z z1 2+ .   Thus

z z z z1 2 1 2+ ≤ + .

Polar Representation of Complex Numbers
Frequently, points in the complex plane, which represent complex numbers, are
defined by means of polar coordinates.  The complex number z x iy= +  can be
located as polar coordinate ( , )r θ  instead of its rectangular coordinates ( , ),x y  it
follows that there is a corresponding way to write complex number in polar form.

We see that  r is identical to the modulus of  z; whereas θ   is the directed angle from
the positive x-axis to the point  P.  Thus we have

x r= cosθ          and       y r= sinθ ,
where

r z x y
y
x

= = +

=

2 2 ,

tan .θ

We called θ   the argument of  z  and write θ = arg .z   The angle θ   will be expressed
in radians and is regarded as positive when measured in the counterclockwise
direction and negative when measured clockwise.  The distance r is never negative.
For a point at the origin; z = 0,  r  becomes zero.  Here θ  is undefined since a ray like
that cannot be constructed.  Consequently, we now defined the polar for  m of a
complex number z x iy= +  as

z r i= +(cos sin )θ θ                                               (1)
Clearly, an important feature of arg z = θ   is that it is multivalued, which means for a
nonzero complex number z, it has an infinite number of distinct arguments (since
sin( ) sin , cos( ) cos ,θ π θ θ π θ+ = + = ∈2 2k k k Z   ) .  Any two distinct arguments of  z
differ each other by an integral multiple of 2π , thus two nonzero complex number
z r i1 1 1 1= +(cos sin )θ θ  and z r i2 2 2 2= +(cos sin )θ θ  are equal if and only if

r r1 2=      and     θ θ π1 2 2= + k ,
where k is some integer.  Consequently, in order to specify a unique value of arg ,z
we



may restrict its value to some interval of length.  For this, we introduce the concept of
principle value of the argument (or principle argument) of a nonzero complex number
z, denoted as Arg z, is defined to be the unique value that satisfies

ππ <≤− z Arg .
Hence, the relation between arg z and Arg z is given by

arg , .z z k k Z= + ∈Arg      2 π

Multiplication and Division in Polar From
The polar description is particularly useful in the multiplication and division of
complex number.  Consider z r i1 1 1 1= +(cos sin )θ θ  and z r i2 2 2 2= +(cos sin ).θ θ
1. Multiplication

 Multiplying z1  and z2  we have

 ( )z z r r i1 2 1 2 1 2 1 2= + + +cos( ) sin( ) .θ θ θ θ
 When two nonzero complex are multiplied together, the resulting product has a

modulus equal to the product of the modulus of the two factors and an argument
equal to the sum of the arguments of the two factors; that is,

z z r r z z
z z z z

1 2 1 2 1 2

1 2 1 2 1 2

= =
= + = +

,
arg( ) arg( ) arg( ).θ θ

1. Division
 Similarly, dividing z1  by z2  we obtain

 ( )z
z

r
r

i1

2

1

2
1 2 1 2= − + −cos( ) sin( ) .θ θ θ θ

 The modulus of the quotient of two complex numbers is the quotient of their
modulus, and the argument of the quotient is the argument of the numerator less
the argument of the denominator, thus
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Euler’s Formula and Exponential Form of Complex Numbers
For any real θ,  we could recall that we have the familiar Taylor series representation
of sinθ , cosθ  and eθ :
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Thus, it seems reasonable to define
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i iiθ θ
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= + + + +1
2 3
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!
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!

.   !

In fact, this series approach was adopted by Karl Weierstrass (1815-1897) in his
development of the complex variable theory.  By (2), we have
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Now, we obtain the very useful result known as Euler’s2 formula  or  Euler’s identity   

e iiθ θ θ= +cos sin .                                                 (2)
Consequently, we can write the polar representation (1) more compactly in
exponential form as

 z rei= θ .
Moreover, by the Euler’s formula (2) and the periodicity of the trigonometry
functions, we get

.integer  allfor       1

, real allfor       1
)2( ke

e
ki

i

=

=
π

θ θ

Further, if two nonzero complex numbers z r ei
1 1

1= θ  and z r ei
2 2

2= θ , the multiplication
and division of complex numbers z z1 2 and   have exponential forms
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,θ θ
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respectively.

de Moivre’s Theorem
In the previous section we learned to multiply two number of complex quantities
together by means of polar and exponential notation.  Similarly, we can extend this
method to obtain the multiplication of any number of complex numbers. Thus, if
z r e k nk k

i k= =θ , , , , , 1 2 "  for any positive integer n,  we have
z z z r r r en n

i n
1 2 1 2

1 2! ! != + + +( ).( )θ θ θ

 In particular, if all values are identical we obtain
( )z re r en i n n in= =θ θ    for any positive integer n.

Taking r = 1 in this expression, we then have
( )e ei n inθ θ=    for any positive integer n.

By Euler’s formula (3), we obtain
( )cos sin cos sinθ θ θ θ+ = +i n i nn                                      (3)

                                                          
2  Leonhard Euler (1707 -1783) is a Swiss mathematician.



for any positive integer n.  By the same argument, it can be shown that (3) is also true
for any nonpositive integer n.  Which is known as de Moivre’s3

  formula, and more
precisely, we have the following theorem:

Theorem: (de Moivre’s Theorem)
For any θ   and for any integer n,

( )cos sin cos sinθ θ θ θ+ = +i n i nn .
In term of exponential form, it essentially reduces to

( )e ei n inθ θ= .

Roots of Complex Numbers
Definition:
Let n be a positive integer ≥ 2,  and let  z  be nonzero complex number.  Then any
complex number  w  that satisfies

w zn =
is called the n-th root of  z, written as w zn= .

Theorem:
Given any nonzero complex number z rei= θ , the equation w zn =  has precisely n
solutions given by

w r
k

n
i

k
nk

n=
+



 +

+











 cos sin ,
θ π θ π2 2

    k n= −0 1 1, , , ,"

or

w r ek
n

i
k

n=










+





 

θ π2

,    k n= −0 1 1, , , , "

where rn  denotes the positive real n-th root of r z=  and θ = Arg z.

Elementary Complex Functions
Let A and B  be sets.  A  function f  from A to B, denoted by BAf →:  is a rule
which assigns to each element Aa ∈  one and only one element ,Bb ∈  we write

)(afb =
and call b the image of a under  f.  The set A is the domain-set of  f, and the set B is the
codomain or  target-set of  f.  The set of all images

{ } :)()(  AaafAf ∈=
is called the range or image-set of  f.  It must be emphasized that both a domain-set
and a rule are needed in order for a function to be well defined.  When the domain-set
is not mentioned, we agree that the largest possible set is to be taken.

The Polynomial and Rational Functions

                                                          
3  This useful formula was discovered by a French mathematician, Abraham de Moivre (1667 - 1754).



1. Complex Polynomial Functions are defined by
 P z a a z a z a zn

n
n

n( ) ,= + + + +−
−

0 1 1
1

  !

 where a a a Cn0 1, , ," ∈  and n N∈ .   The integer n is called the  degree  of
polynomial P z( ),  provided that an ≠ 0.   The polynomial p z az b( ) = +  is called
a  linear function.

2. Complex Rational Functions are defined by the quotient of two polynomial
functions; that is,

 R z
P z
Q z

( )
( )
( )

,=

 where P z Q z( ) ( ) and  are polynomials defined for all z C∈  for which Q z( ) .≠ 0
In particular, the ratio of two linear functions:

 f z
az b
cz d

( ) =
+
+

    with ad bc− ≠ 0,

 which is called a  linear fractional function or Mobius##  transformation.

The Exponential Function
In defining complex exponential function, we seek a function which agrees with the
exponential function of calculus when the complex variable z x iy= +  is real; that is
we must require that

f x i e x( )+ =0    for all real numbers x,
and which has, by analogy, the following properties:

e e ez z z z1 2 1 2= + ,
e e ez z z z1 2 1 2= −

for all complex numbers z z1 2, .   Further, in the previous section we know that by

Euler’s identity, we get .,sincos    Ryyiyeiy ∈+=   Consequently, combining this
we adopt the following definition:

Definition:
Let z x iy= +  be complex number.  The complex exponential function ez  is defined
to be the complex number

e e e y i yz x iy x= = ++ (cos sin ).

Immediately from the definition, we have the following properties:
For any complex numbers z z z x iy x y R1 2, , , , ,    = + ∈  we have
(i). e e ez z z z1 2 1 2= + ,
(ii). e e ez z z z1 2 1 2= − ,
(iii). , real allfor    1 yeiy =

(iv). ,xz ee =

(v). e ez z= ,
(vi). arg( ) , ,e y k k Zz = + ∈2 π  
(vii). ez ≠ 0,



(viii). e z i k k Zz = = ∈1 2    if and only if     ( ), ,π
(ix). e e z z i k k Zz z1 2

1 2 2= = + ∈   if and only if     ( ), .π

Remark
In calculus, we know that the real exponential function is one-to-one.  However ez  is
not one-to-one on the whole complex plane.  In fact, by (ix) it is periodic with period
i( );2π  that is,

e ez i k z+ =( ) ,2 π   k Z∈ .
The periodicity of the exponential implies that this function is infinitely many to one.

Trigonometric Functions
From the Euler’s identity we know that

e x i xix = +cos sin ,       e x i xix− = −cos sin
for every real number x;  and it follows from these equations that

e e xix ix+ =− 2 cos ,       e e i xix ix− =− 2 sin .
Hence it is natural to define the sine and cosine functions of a complex variable z as
follows:

Definition:
Given any complex number z, the complex trigonometric functions sin z  and cosz  in
terms of complex exponentials are defines to be

sin ,z
e e

i

iz iz

=
− −

2

cos .z
e eiz iz

=
+ −

2

Let z x iy x y R= + ∈, , .    Then by simple calculations we obtain

sin sin cos .
( ) ( )

z
e e

i
x

e e
i x

e ei x iy i x iy y y y y

=
−

= ⋅
+






 + ⋅

−







+ − + − −

2 2 2
Hence

sin sin cosh cos sinh .z x y i x y= +
Similarly,

cos cos cosh sin sinh .z x y i x y= −
Also

sin sin sinh ,z x y2 2 2= +      cos cos sinh .z x y2 2 2= +

Therefore we obtain
(i). sin , ;z z k k Z= = ∈0    if and only if      π
(ii). cos ( ) , .z z k k Z= = + ∈0 2    if and only if      π π

The other four trigonometric functions of complex argument are easily defined in
terms of sine and cosine functions, by analogy with real argument functions, that is

tan
sin
cos

,z
z
z

=      sec
cos

,z
z

=
1

where z k k Z≠ + ∈( ) , ;π π2    and



cot
cos
sin

,z
z
z

=       csc
sin

,z
z

=
1

where z k k Z≠ ∈π, .  

As in the case of the exponential function, a large number of the properties of the real
trigonometric functions carry over to the complex trigonometric functions. Following
is a list of such properties.

For any complex numbers w z C, ,∈  we have
(i). sin cos ,2 2 1z z+ =

 1 2 2+ =tan sec ,z z
 1 2 2+ =cot csc ;z z

(ii). sin( ) sin cos cos sin ,w z w z w z± = ±
 cos( ) cos cos sin sin ,w z w z w z± = $

 tan( )
tan tan

tan tan
;w z

w z
w z

± =
±

1$
(iii). sin( ) sin ,− = −z z tan( ) tan ,− = −z z
        csc( ) csc ,− = −z z cot( ) cot ,− = −z z
        cos( ) cos ,− =z z sec( ) sec ;− =z z
(iv). For any k Z∈ ,

 sin( ) sin ,z k z+ =2 π cos( ) cos ,z k z+ =2 π
 sec( ) sec ,z k z+ =2 π csc( ) csc ,z k z+ =2 π
 tan( ) tan ,z k z+ =π cot( ) cot ,z k z+ =π

(v). sin sin ,z z=     cos cos ,z z=     tan tan ,z z=
 sec sec ,z z=     csc csc ,z z=     cot cot ;z z=

 
 
Hyperbolic Functions
The complex hyperbolic functions are defined by a natural extension of their
definitions in the real case.

Definition:
For any complex number z,  we define the complex hyperbolic sine and the complex
hyperbolic cosine as

sinh ,z
e ez z

=
− −

2

cosh .z
e ez z

=
+ −

2

Let z x iy x y R= + ∈, , .   It is directly from the previous definition, we obtain the
following identities:

sinh sinh cos cosh sin ,
cosh cosh cos sinh sin ,

z x y i x y
z x y i x y

= +
= +

sinh sinh sin ,

cosh sinh cos .

z x y

z x y

2 2 2

2 2 2

= +

= +



Hence we obtain
(i). sinh ( ), ,z z i k k Z= = ∈0    if and only if      π

(ii). cosh , .z z i k k Z= = +



 ∈0

2
    if and only if      

π
π

Now, the four remaining complex hyperbolic functions are defined by the equations

 tanh
sinh
cosh

,z
z
z

=      sech z
z

=
1

cosh
,

for z i k k Z= +



 ∈

π
π

2
, ;  

coth
coth
sinh

,z
z
z

=      csch z
z

=
1

sinh
,

for    z i k k Z= ∈( ), .π

Immediately from the definition, we have some of the most frequently use identities:
For any complex numbers w z C, ,∈
(i). cosh sinh ,2 2 1z z− =

 1 2 2− =tanh ,z zsech
 coth ;2 21z z− = csch

(ii). sinh( ) sinh cosh cosh sinh ,w z w z w z± = ±
 cosh( ) cosh cosh sinh sinh ,w z w z w z± = ±

 tanh( )
tanh tanh

tanh tanh
;w z

w z
w z

± =
±

±1
(iii). sinh( ) sinh ,− = −z z     tanh( ) tanh ,− = −z z

 csch csch( ) ,− = −z z     coth( ) coth ,− = −z z
 cosh( ) cosh ,− =z z       sech sech ( ) ;− =z z

(iv). sinh sinh ,z z=     cosh cosh ,z z=     tanh tanh ,z z=
 sech sech  z z= ,     csch csch  z z= ,     coth coth ;z z=

Remark
(i). Complex trigonometric and hyperbolic functions are related:

sin sinh ,iz i z=     cos cosh ,iz z=     tan tanh ,iz i z=
sinh sin ,iz i z=     cosh cos ,iz z=     tanh tan .iz i z=

(i). The above discussion has emphasized the similarity between the real and their
complex extensions.  However, this analogy should not carried too far. For
example, the real sine and cosine functions are bounded by 1, i.e.,

sin cosx x≤ ≤1 1   and        for all x R∈ ,
 but

sin sinh cos coshiy y iy hy= =     and     
 which become arbitrary large as y → ∞.

The Logarithm



One of basic properties of the real-valued exponential function, e x Rx , , ∈  which is
not carried over to the complex-valued exponential function is that of being one-to-
one.  As a consequence of the periodicity property of complex exponential

e e z C k Zz z i k= ∈ ∈+ ( ) , , ,2 π     
this function is, in fact, infinitely many-to-one.

Obviously, we cannot define a complex logarithmic as a inverse function of complex
exponential since ez  is not one-to-one.  What we do instead of define the complex
logarithmic not as a single value ordinary function, but as a multivalued relationship
that inverts the complex exponential function; i.e.,

w z= log     if    z ew= ,
or it will preserve the simple relation

e zzlog =    for all nonzero z C∈ .

Definition:
Let  z  be any nonzero complex number.  The complex logarithm of a complex variable
z, denoted log ,z  is defined to be any of the infinitely many values

log log arg ,z z i z= +   z ≠ 0.

Remark
(i). We can write log z  in the equivalent forms

 log log ( ),z z i z k= + +Arg 2 π   k Z∈ .
(ii). The complex logarithm of zero will remain undefined.
(iii). The logarithm of the real modulus of  z is base e (natural) logarithm.
(iv). log z  has infinitely many values consisting of the unique real part,

 Re(log ) logz z=
 and the infinitely many imaginary parts

 Im(log ) arg , .z z z k k Z= = + ∈Arg    2 π
In general, the logarithm of any nonzero complex number is a multivalued relation.
However we can restrict the image values so as to defined a single-value function.

Definition:
Given any nonzero complex number z, the principle logarithm function or the
principle value of log ,z  denoted Log z , is defined to be

Log Arg  z z i z= +log ,
where ππ <≤− z Arg .

Clearly, by the definition of log z  and Log z,  they are related by
logz = Log    z i k k Z+ ∈( ), .2 π

Let  w and z  be any two nonzero complex numbers, it is straightforward from the
definition that we have the following identities of complex logarithm:

(i). log( ) log log ,w z w z+ = +

(ii). log log log ,
w
z

w z



 = −

(iii). e zzlog ,=
(iv). log ( )e z i kz = + 2 π ,  k Z∈ ,



(v). ( )log logz n zn =   for any integer positive n.

Complex Exponents
Definition:
For any fixed complex number c, the complex exponent c of a nonzero complex
number z is defined to be

z ec c z= log      for all { }z C∈ \ .0

Observe that we evaluate ec zlog  by using the complex exponential function, but since
the logarithm of z is multivalued.  For this reason, depending on the value of c, zc

may has more than one numerical value.

The principle value of complex exponential c, zc
 occurs when log z  is replaced by

principle logarithm function, Log z  in the previous definition. That is,

z ec c z= Log      for all { }z C∈ \ ,0

where − ≤ ≤π πArg z   If z rei= θ  with θ = Arg z,  then we get
z e e ec c r i c r i= =+(log ) log .θ θ

Inverse Trigonometric and Hyperbolic
In general, complex trigonometric and hyperbolic functions are infinite many-to-one
functions.  Thus, we define the inverse complex trigonometric and hyperbolic as
multiple-valued relation.

Definition:
For z C∈ ,   the inverse trigonometric arctrig z or trig−1z  is defined by

zw 1trig −=     if    z w= trig .
Here, ‘trig w’ denotes any of the complex trigonometric functions such as sin ,w
cos ,w  etc.

In fact, inverses of trigonometric and hyperbolic functions can be described in terms
of logarithms.  For instance, to obtain the inverse sine, sin ,−1 z  we write w z= −sin 1

when z w= sin .  That is, w z= −sin 1  when

z w
e e

i

iw w

= =
− −

sin .
1

2
Therefore we obtain

( ) ( ) ,e iz eiw iw2 2 1 0− − =
that is quadratic in eiw .   Hence we find that

e iz ziw = + −( ) ,1 2 1
2

where ( )1 2 1
2− z  is a double-valued of z,  we arrive at the expression
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Here, we have the five remaining inverse trigonometric, as multiple-valued relations
which can be expressed in terms of natural logarithms as follows:
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The principal value of complex trigonometric functions are defined by
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Definition:
For any complex number z, the inverse hyperbolic, archyp z  or hyp z−1  is defined by

w z= −hyp 1      if     z w= hyp .
Here ‘hyp’ denotes any of the complex hyperbolic functions such as sinh ,z cosh ,z etc.

These relations, which are multiple-valued, can be expressed in term of natural
logarithms as follows:
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The principle value of complex hyperbolic functions are defined by
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